JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2023  1,500
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 58(2024) N 4 p. 773-789; DOI 10.1134/S0026893324700353 Full Text

Yu.N. Vorobjev1*

Molecular Ion Channel Blockers of Influenza A and SARS-CoV-2 Viruses

1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia

*ynvorob@niboch.nsc.ru
Received - 2023-11-14; Revised - 2024-02-07; Accepted - 2024-02-15

Molecules were proposed to block the functional cycles of the influenza virus A and SARS-CoV- 2. The blocker molecules efficiently bind inside the M2 and E channels of influenza A and SARS-CoV-2 viruses and block diffusion of H+/K+ ions, thus distorting the virus functional cycle. A family of positively charged (+2 e.u.) molecular blockers of H+/K+ ion diffusion through the M2 and E channels was proposed. The blocker molecules were diazabicyclooctane (DABCO) derivatives and were investigated for affinity for the M2 and E channels. Thermal dynamics of native and mutant channel structures and blocker binding were modeled by exhaustive docking. Binding energy calculations revealed within-channel, blocking, and extrachannel binding sites in the M2 and E channel proteins. Blocker molecules with higher affinity for the blocking sites were proposed. The most probable amino acid mutations the M2 and E channels were considered, the efficiency of channel blocking was analyzed, and optimal structures were assumed for the blocker molecules.

influenza A and SARS-CoV-2 viruses, M2 and E ion channels, molecular dynamics, M2 and E ion channel blockers, diazabicyclooctane derivatives, binding and blocking of M2 and E channels



JMB-FOOTER RAS-JOURNALS