JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 57(2023) N 5 p. 793-801; DOI 10.1134/S0026893323050059 Full Text

K.V. Kopylova1, Ed.W. Kasparov1, I.V. Marchenko1, M.V. Smolnikova1*

Digital PCR as a Highly Sensitive Diagnostic Tool: A Review

1Scientific Research Institute of Medical Problems of the North, Krasnoyarsk, 660022 Russia

*smarinv@yandex.ru
Received - 2022-12-29; Revised - 2023-03-29; Accepted - 2023-03-29

Digital PCR (dPCR) is a nucleic acid quantification method that is widely used in genetic analysis. One of the most significant advantages of dPCR over other methods is the possibility of absolute quantitative determination of genetic material without construction of calibration curves, which allows one to detect even single molecules of nucleic acids, and, hence, provides early diagnosis of diseases. One specific characteristic of dPCR is the detection of the analyzed biological object in each microreaction, followed by the presentation of the analysis results in a binary system, thereby giving the method its name. The key aspects of developing the dPCR method, i.e., from the first devices based on microfluidic chip technology to modern systems capable of measuring a target at a concentration of up to 1 in 100000 copies are shown in the current work. We analyzed the data on the detection of various pathogens using dPCR, as well as summarizing various study results demonstrating the innovativeness of this method. Both the possibilities of multiplex dPCR analysis and its potential in clinical practice are presented. This review also addresses the issue of the role of dPCR in the development of noninvasive methods for analysis of oncological diseases. Possible ways of developing dPCR technology were emphasized, including its use as a "point-of-care" system.

digital PCR, dPCR, infection, DNA, oncology, virus, COVID-19



JMB-FOOTER RAS-JOURNALS