JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 57(2023) N 2 p. 245-257; DOI 10.1134/S0026893323020140 Full Text

T.A. Kurgina1, O.I. Lavrik1,2*

Poly(ADP-Ribose) Polymerases 1 and 2: Classical Functions and Interaction with New Histone Poly(ADP-Ribosyl)ation Factor HPF1

1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
2Novosibirsk State University, Novosibirsk, 630090 Russia

*lavrik@niboch.nsc.ru
Received - 2022-08-09; Revised - 2022-09-07; Accepted - 2022-09-07

Poly(ADP-ribose) (PAR) is a negatively charged polymer, linear or branched, that consists of ADP-ribose monomers. PAR is synthesized by poly(ADP-ribose)polymerase (PARP) enzymes, which are activated upon DNA damage and use nicotinamide adenine dinucleotide (NAD+) as a substrate. The best-studied members of the PARP family, PARP1 and PARP2, are the most important nuclear proteins involved in many cell processes, including the regulation of DNA repair. PARP1 and PARP2 catalyze PAR synthesis and transfer to amino acid residues of target proteins, including autoPARylation. PARP1 and PARP2 are promising targets for chemotherapy in view of their key role in regulating DNA repair. A novel histone PARylation factor (HPF1) was recently discovered to modulate PARP1/2 activity by forming a transient joint active site with PARP1/2. Histones are modified at serine residues in the presence of HPF1. The general mechanism of the interaction between HPF1 and PARP1/2 is a subject of intense research now. The review considers the discovery and classical mechanism of PARylation in higher eukaryotes and the role of HPF1 in the process.

poly(ADP-ribosyl)ation, PARylation, PARP1, PARP2, poly(ADP-ribose), HPF1, histones



JMB-FOOTER RAS-JOURNALS