JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 56(2022) N 2 p. 297-305; DOI 10.1134/S002689332202008X Full Text

B.S. Melnik1*, A.V. Finkelstein1,2

Physical Basis of Functioning of Antifreeze Protein

1Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290 Russia
2Biology Department, Moscow State University, Moscow, 119192 Russia

*bmelnik@phys.protres.ru
Received - 2021-08-16; Revised - 2021-08-16; Accepted - 2021-08-31

Antifreeze proteins, expressed in cold-blooded organisms, prevent ice formation in their bodies, and thus help them to survive in extremely cold winter temperatures. However, the mechanism of action of these proteins is still not clear. In any case, it is not simply a decrease in the temperature of normal ice formation. In this work, investigating the ice-binding protein (a mutant form of the antifreeze protein cfAFP from the spruce budworm Choristoneura fumiferana, which overwinters in needles), we showed that this antifreeze protein does not at all lower the freezing point of water and, paradoxically, increases the melting point of ice. On the other hand, calculations based on the theory of crystallization show that at temperatures of 0° to -30°C ice can only appear on surfaces that contact water, but not in the body of water. These facts suggest a new perspective on the role of antifreeze proteins: their task is not (as it is commonly believed) to bind with nascent ice crystals already formed in the organism and stop their growth, but to bind to those surfaces, on which ice nuclei can appear, and thus completely inhibit the ice formation in supercooled water or biological fluid.

ice-binding protein, antifreeze protein, ice melting, ice crystallization, ice crystallization temperature, ice nuclei, ice initiating surfaces, inhibition of ice formation



JMB-FOOTER RAS-JOURNALS