JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 56(2022) N 1 p. 115-123; DOI 10.1134/S0026893322010046 Full Text

S.A. Lapa1*, O.S. Volkova1, V.E. Kuznetsova1, A.S. Zasedatelev1, A.V. Chudinov1

Study of Multiple Enzymatic Incorporation of Modified Nucleotides of Purine and Pyrimidine Nature in the Growing DNA Chain

1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia

*lapa@biochip.ru
Received - 2021-04-27; Revised - 2021-04-27; Accepted - 2021-05-21

The substrate properties of nitrogen-base modified derivatives of purine and pyrimidine deoxynucleoside triphosphates during their simultaneous pairwise insertion into the growing DNA strand have been studied. Modified nucleotides were introduced using real-time PCR and the primer extension reaction; in one reaction, derivatives with both different and similar functional substituents were used. Genomic bacterial DNA, specially constructed synthetic DNA fragments, and SELEX libraries were used as templates. The reactions were performed using DNA polymerases with no 3'-5' correcting exonuclease activity: Taq, Vent (exo-), DeepVent (exo-), and KOD XL. It was shown that the substrate efficiency is affected by both the size of the substituent group and the chemical nature of deoxynucleoside triphosphate. The effectiveness varies significantly depending on the polymerase used. The most effective of the studied substrates are pyrimidine deoxynucleoside triphosphates in combination with Vent (exo-) DNA polymerase. DNAs modified by pairs of dissimilar nucleotides (dU + dC, dU + dA, dC + dA) with similar and different functional substituents were obtained.

modified deoxynucleoside triphosphates, multiple enzymatic incorporation of modified nucleotides into DNA, modified aptamers



JMB-FOOTER RAS-JOURNALS