JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 55(2021) N 2 p. 236-242; DOI 10.1134/S0026893321020084 Full Text

E.S. Ilina1,2, O.I. Lavrik1,2, S.N. Khodyreva1*

5'-Deoxyribose Phosphate Lyase Activity of Apurinic/Apyrimidinic Endonuclease 1

1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
2Novosibirsk State University, Novosibirsk, 630090 Russia

*svetakh@niboch.nsc.ru
Received - 2020-08-27; Revised - 2020-10-16; Accepted - 2020-10-22

One of the most common DNA lesions is the appearance of apurinic/apyrimidinic (AP-) sites. The main repair pathway for AP sites is initiated by apurinic/apyrimidinic endonuclease 1 (APE1). Upon hydrolysis of the phosphodiester bond by this enzyme, a one nucleotide gap flanked by 3'-hydroxyl and 5'-deoxyribose phosphate groups on the 5'-side of the AP site is formed. After hydrolysis of the AP site, APE1 remains associated with the product for some time. In the present work, the ability of APE1 to form a product of covalent attachment of APE1 to DNA containing a gap with a 5'-deoxyribose phosphate residue was demonstrated. In addition, it was found that while in a complex with the product of hydrolysis of the AP site, APE1 exhibits 5'-deoxyribose phosphate lyase activity, cleaving off the 5'-deoxyribose phosphate residue. The presence of lyase activity in APE1 may be important for the repair of AP sites if there is a deficiency of, or mutations in DNA polymerase β, the main enzyme that removes the 5'-deoxyribose phosphate group.

apurinic/apyrimidinic sites, apurinic/apyrimidinic endonuclease 1, deoxyribose phosphate lyase activity, DNA repair, affinity modification



JMB-FOOTER RAS-JOURNALS