JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2023  1,500
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 55(2021) N 2 p. 227-235; DOI 10.1134/S0026893321020059 Full Text

M.A. Dymova1, A.V. Endutkin1, V.V. Polunovsky2, A.I. Zakabunin1, E.A. Khrapov1, N.A. Torgasheva1, A.V. Yudkina1, G.V. Mechetin1, M.L. Filipenko1, D.O. Zharkov1,2*

Characterization of Recombinant Endonuclease IV from Mycobacterium tuberculosis

1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
2Novosibirsk State University, Novosibirsk, 630090 Russia

*dzharkov@niboch.nsc.ru
Received - 2020-09-04; Revised - 2020-10-19; Accepted - 2020-10-20

Mycobacterium tuberculosis cells contain two apurinic/apyrimidinic (AP) endonucleases, endonuclease IV (MtbEnd) and exonuclease III (MtbXthA), the former playing a dominant role in protecting mycobacterial DNA from oxidative stress. Mycobacterial endonuclease IV substantially differs from its homologs found in Escherichia coli and other proteobacteria in a number of conserved positions important for DNA binding and AP site recognition. The M. tuberculosis end gene was cloned, and recombinant MtbEnd purified and characterized. The protein efficiently hydrolyzed DNA at the natural AP site and its 1'-deoxy analog in the presence of divalent cations, of which Ca2+, Mn2+, and Co2+ supported the highest activity. Exonuclease activity was not detected in MtbEnt preparations. The pH optimum was estimated at 7.0-8.0; the ionic strength optimum, at ~50 mM NaCl. Enzymatic activity of MtbEnd was suppressed in the presence of methoxyamine, a chemotherapeutic agent that modifies AP sites. Based on the results, MtbEnd was assumed to provide a possible target for new anti-tuberculosis drugs.

Mycobacterium tuberculosis, AP endonuclease, DNA repair, methoxyamine



JMB-FOOTER RAS-JOURNALS