JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2023  1,500
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 55(2021) N 2 p. 157-168; DOI 10.1134/S0026893321020126 Full Text

N.I. Rechkunova1*, Y.S. Krasikova1, O.I. Lavrik1,2

Interactome of Base and Nucleotide Excision DNA Repair Systems

1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
2Novosibirsk State University, Novosibirsk, 630090 Russia

*nadyarec@niboch.nsc.ru
Received - 2020-08-12; Revised - 2020-08-12; Accepted - 2020-08-24

The base and nucleotide excision DNA repair (BER and NER) systems are aimed at removing specific types of damaged DNA, i.e., oxidized, alkylated, or deaminated bases in the case of BER and bulky damage caused by UV radiation or chemical carcinogens in the case of NER. In some cases, however, the repair process follows a more complex scenario, which implies that the repair pathways exchange proteins and interact with each other to form a common interactome. This review describes the BER and NER mechanisms and discusses the current data on the involvement of the NER proteins in the repair of DNA lesions caused by oxidative stress and the BER proteins in the removal of bulky DNA adducts. We also discuss the role of poly(ADP-ribose) polymerase 1 in the regulation of the BER and NER processes and their coordination in the repair of complex (cluster) lesions.

DNA repair, protein-protein interactions, regulation of DNA repair processes



JMB-FOOTER RAS-JOURNALS