JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 54(2020) N 3 p. 449-457; DOI 10.1134/S0026893320030206 Full Text

D.D. Yanshina1, A.V. Gopanenko1, G.G. Karpova1,2, A.A. Malygin1,2*

Replacement of Hydroxylated His39 in Ribosomal Protein uL15 with Ala or Thr Impairs the Translational Activity of Human Ribosomes

1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
2Novosibirsk State University, Novosibirsk, 630090 Russia

*malygin@niboch.nsc.ru
Received - 2019-07-30; Revised - 2020-01-21; Accepted - 2020-01-21

Post-translational hydroxylation occurs in three mammalian ribosomal proteins, uS12, uL2, and uL15, which are located in the small (S) and large (L) subunits of the ribosome near the most important decoding and peptidyltransferase functional centers. We have used cell cultures, which produce protein uL15 labeled with the 3xFLAG epitope at the C-terminus (uL153xFLAG) or mutant forms of uL153xFLAG that contain His39Ala, His39Thr, or His40Ala substitutions, to examine the role of hydroxylated His39 of uL15 in maintaining the translational activity of ribosomes. It has been found that exogenous uL153xFLAG is able to functionally replace endogenous uL15 in HEK293 cells transfected with an appropriate DNA construct. However, the translational activity of ribosomes decreases by about 35% in cells that produce the above mutant forms of uL153xFLAG compared with that in cells that produce nonmutated uL153xFLAG. Analysis of the structural model of the human ribosome has allowed us to assume that the hydroxyl group in His39 is involved in the local stabilization of the ribosome structure through the formation of a hydrogen bond between this group and the nitrogen atom of the His40 imidazole ring. Given that His39 is located near the E site of the ribosome, we believe that this stabilization of the ribosome structure ensures the maintenance of its translational activity.

post-translational modifications of proteins, hydroxylation, uL15, site-directed mutagenesis, HEK293 cells, transfection, human ribosome



JMB-FOOTER RAS-JOURNALS