JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 54(2020) N 3 p. 311-316; DOI 10.1134/S002689332003005X Full Text

Y.E. Yegorov1*

Healthy Aging: Antioxidants, Uncouplers and/or Telomerase?

1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia

*yegorov58@gmail.com
Received - 2019-11-18; Revised - 2019-12-13; Accepted - 2019-12-14

The free radical theory of aging was proposed in 1956. Although it does not fully describe the mechanisms of aging, it is generally accepted that reactive oxygen species (ROS) are one of the pathogenetic factors in aging and, in particular, in the development of pathologies associated with aging. The main source of ROS in the cell is mitochondria. Antioxidants directed to mitochondria have a positive effect, but have low efficiency. The problem is that increased amounts of antioxidants disrupt normal cellular redox reactions, and a low amount of antioxidants is not able to seriously affect the processes. Protection against ROS may be more effective if the rate of ROS formation is reduced. There is a natural mitochondrial uncoupling process that significantly reduces ROS production. The weak uncoupler dinitrophenol (DNP) prolongs the life span of mice, reduces traumatic brain damage, and inhibits the development of a number of neurodegenerative diseases. Unfortunately, DNP has a number of disadvantages that hinder its practical use. Uncoupling of oxidative phosphorylation by free fatty acids is a natural mechanism, the activation of which can be used in medicine. The third (after antioxidants and uncouplers), but so far little studied, method of reducing ROS is telomerase, which, under conditions of oxidative stress, is transported into the mitochondria and improves cell survival by reducing ROS production.

aging, uncoupling, antioxidants, cells, reactive oxygen species, mitochondria, telomerase



JMB-FOOTER RAS-JOURNALS