JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 49(2015) N 4 p. 569-580; DOI 10.1134/S0026893315040159 Full Text

E.S. Shumkova1,2*, D.O. Egorova2, S.V. Boronnikova3, E.G. Plotnikova2,3

Polymorphism of the bphA genes in bacteria destructing biphenyl/chlorinated biphenils

1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
2Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, 614081 Russia
3Perm State University, Perm, 614990 Russia

*ekaterinash80@mail.ru
Received - 2014-10-30; Accepted - 2015-02-05

Polychlorinated biphenyls (PCBs) are persistent organic pollutants. Biphenyl 2,3-dioxygenase (BDO) is a key enzyme that determines the range of PCBs oxidized by a bacterial strain. BDO subunit α (BphA1) plays an essential role in substrate recognition and binding. The genes for dioxygenases that hydroxylate aromatic rings were screened and analyzed phylogenetically. Genes found in biphenyl-oxidizing Rhodococcus erythropolis strains G12a, B7b, and B106a proved to be similar to the published nucleotide sequences of the Rhodococcus sp. HA99 and R04 and Novosphingobium aromaticivorans F199 bphA1 genes, which code for the α-subunits that do not belong to the biphenyl/toluene dioxygenase (B/TDO) family. PCB-destructing R. ruber P25 was found to possess a unique bphA1 gene, which clusters together with the phenylpropionate dioxygenase (PPDO) α-subunits of Mycobacterium vanbaalenii PYR-1 and Frankia sp. EuI1c. The deduced amino acid sequences of the genes were analyzed. The amino acids of the BDO active site in R. wratislaviensis P1, P12, P13, and P20 (bphA1 genes of the B/TDO family) were identical to those of the active PCB degrader R. jostii RHA1. The Rhodococcus strains in question were shown to be active toward both orthoand parachlorinated ring of 2,4'-dichlorobiphenyl. The α-subunit amino acids responsible for the substrate specificity of the enzyme in Pseudomonas sp. S9, S13, S210, S211, and S212 (B/TDO family) were the same as in P. pseudoalcaligenes KF707. The Pseudomonas strains were active toward the para-chlorinated ring of 2,4'-dichlorobiphenyl. The results of screening bacterial strains for bphA1 can be used to identify the biotechnologically promising PCB destructors.

Rhodococcus, Pseudomonas, biphenyl, polychlorinated biphenyls, gene polymorphism, bph genes, biphenyl 2,3-dioxygenase



JMB-FOOTER RAS-JOURNALS