2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 52(2018) N 5 p. 723-731; DOI 10.1134/S0026893318050047 Full Text

Sh. Azadi1, M. Tafazzoli-Shadpour1*, R. Omidvar1

Steered Molecular Dynamics Simulation Study of Quantified Effects of Point Mutation Induced by Breast Cancer on Mechanical Behavior of E-Cadherin

1Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran

Received - 2017-07-03; Accepted - 2017-09-06

E-cadherin is a member of the cadherin family that plays a key role in the formation of cell-cell adhesion among epithelial tissues. Point mutations are one of the structural abnormalities of E-cadherin in human carcinomas. Such abnormalities can alter mechanical properties of proteins that play an important role in their biological activities. To determine the impact of point mutations on protein mechanical properties, the second fragment of extracellular domain of E-cadherin was modeled using steered molecular dynamics simulations. The molecular dynamics modeling included application of tensile forces in both constant velocity and constant force modes to examine the effects of Met282 to He and Asn315 to Ser mutations on mechanical behavior of protein structure. The stabilities of the wild type and mutant structures were also obtained by the protein design foldX algorithm. Results confirmed the lower stability of the mutant domains compared to the wild type. The mutated proteins displayed softer behavior than the reference protein and their stiffness decreased by up to 34%. Our findings suggest that local changes in molecular structure due to mutations may lead to noticeable alterations in mechanical properties within the entire domain. Since the function of protein is related to its structure, these changes may influence the function of the protein.

steered molecular dynamics, point mutation, breast cancer, stiffness, protein stability