2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 52(2018) N 3 p. 453-457; DOI 10.1134/S0026893318030135 Full Text

E.S. Starodubova*, Yu.V. Kuzmenko, E.O. Pankova, A.A. Latanova, O.V. Preobrazhenskaya, V.L. Karpov

A DNA Construct That Encodes the Rabies Virus Consensus Glycoprotein with a Proteasome Degradation Signal Induces Antibody Production with IgG2A Subtype Predominance

Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia

Received - 2016-11-24; Accepted - 2017-12-04

The possibility of enhancing the immunogenicity of the rabies virus glycoprotein antigen encoded by a DNA vaccine has been investigated. Ubiquitin-like protein FAT10 has been attached to the N-terminus of the glycoprotein to target it to the proteasome and stimulate its presentation by MHC class I. Two forms of the protein, chimeric and original, have been detected in cells transfected with the DNA construct encoding the chimeric protein. The presence of the glycoprotein on the cell surface has been detected by immunostaining of transfected cells. The production of IgG and IgG2a antibodies has been more efficiently induced in mice immunized with the plasmid that encodes the chimeric protein than in those immunized with the plas-mid that encodes unmodified glycoprotein. Moreover, the level of IgG2a antibodies exceeded the level of IgG1 antibodies, which indicates a preferential increase in the Th1 component of the immune response. The proposed DNA construct that encodes a modified glycoprotein with a proteasome degradation signal maybe a promising DNA vaccine immunogen for post-exposure prophylaxis of rabies.

rabies virus, glycoprotein, DNA vaccine, FAT10, proteasome