2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 52(2018) N 1 p. 84-90; DOI 10.1134/S0026893318010132 Full Text

A.O. Mikhaylina*, O.S. Kostareva, E.Y. Nikonova, M.B. Garber, S.V. Tishchenko

Identification of Ribosomal Protein L1-Binding Sites in Thermus thermophilus and Thermotoga maritima mRNAs

Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow oblast, 142290 Russia

Received - 2017-06-20; Accepted - 2017-07-05

The conserved two-domain ribosomal protein (r-protein) L1 is a structural part of the L1 stalk of the large ribosomal subunit and regulates the translation of the operon that comprises its own gene. The regulatory properties of the bacterial r-protein L1 have only been studied in detail for Escherichia coli; however, there were no such studies for other bacteria, in particular, Thermus thermophilus and Thermotoga maritima, which are more evolutionarily ancient. It is known that domain I of the r-protein L1 might have regulatory properties of the whole protein. The aim of this study was to identify regulatory sites on the mRNA of T. thermophilus and T. maritima that interact with r-proteins L1, as well as with their domains I from the same organisms. An analysis of the mRNA of the L11 operon T. thermophilus showed the presence of one potential binding site of the L1 r-protein, two such regions were found also in the mRNA sequence of the L11 operon of T. maritima. The dissociation constants for the L1 proteins from T. thermophilus and T. maritima and their domains I with mRNA fragments from the same organisms that contain the supposed L1-binding sites were determined by surface plasmon resonance. It has been shown that the ribosomal proteins L1 as their domains I bind specific fragments of mRNA from the same organisms that may suggest regulatory activity of the L1 protein in the T. thermophilus and T. maritima and conservatism of the principles of L1-RNA interactions.

ribosomal protein L1, L11 ribosomal protein operon, translational regulation, Thermus thermophilus, Thermotoga maritimа, surface plasmon resonance, equilibrium dissociation constant