2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 56(2022) N 3 p. 382-394; DOI 10.1134/S0026893322030037 Full Text

N.S. Biziaev1, T.V. Egorova1,2, E.Z. Alkalaeva1,2*

Dynamics of Eukaryotic mRNA Structure during Translation

1Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991 Russia
2Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, 119991 Russia

Received - 2021-11-02; Revised - 2021-12-07; Accepted - 2021-12-07

Currently, there is no single concept of the optimal spatial structure of mRNA during translation. It is known that many proteins, associated with the 5' end of mRNA, interact with proteins associated with the 3' end. Moreover, this interaction often affects the activity of these proteins. It is possible within the same mRNA molecule only when the mRNA forms a circular structure in which its ends are spatially close. Discovery of such proteins, in the 90s of the 20th century, made it possible to formulate the closed-loop mRNA structure hypothesis, in which it is assumed that the ends of translationally active mRNA are fixed next to each other due to the interaction of proteins and (or) RNA. However, later it was shown that a closed-loop structure is not always necessary for translation. Moreover, some authors have proposed a model according to which the translating mRNA, on the contrary, should be unfolded into a linear structure. Thus, the spatial structure of the translating mRNA does not have to be universal for all mRNA and can change dynamically, which affects its functional activity. In this review, we have summarized a variety of experimental data and concepts on the relationship between the spatial structure of mRNA and its translational activity.

translation, mRNA, closed-loop mRNA, eIF4F, PABP, ribosome, translational control