JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 55(2021) N 6 p. 950-959; DOI 10.1134/S0026893321050150 Full Text

S. Jabarzadeh1, A. Samiminemati1, M. Zeinoddini1*

In silico Design of a New Multi-Epitope Peptide-Based Vaccine Candidate Against Q Fever

1Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran, Iran

*zeinoddini52@mut.ac.ir
Received - 2020-12-06; Revised - 2021-04-07; Accepted - 2021-04-15

Novel types of the vaccines with high immunogenicity and low risks, including epitope-based vaccines, are sought. Among zoonotic disease, Q fever caused by Coxiella burnetii is an important target due to numerous outbreaks and the pandemic potential. Here we present a synthetic multi-epitope vaccine against Coxiella burnetii. This vaccine was developed using immunoinformatics approach. Antigenic proteins were studied, and five T cell epitopes were selected. Antigenicity, allergenicity, and toxicity of the selected epitopes were evaluated using the VaxiJen 2.0, AllerTOP, and ToxinPred servers, respectively. Selected epitopes were joined in a peptide sequence, with the cholera toxin В subunit (CTXB) as an adjuvant. The affinity of the proposed vaccine to MHCI and II molecules was measured in a molecular docking study. Resultant vaccine has high antigenicity, stability, and a half-life compatible with utilization in vaccination programs. In conclusion, the validated epitope sequences may be used as a potential vaccine to ensure protection against Q fever agent.

Q fever, Coxiella burnetii, peptide-based vaccine, immune informatics, epitope



JMB-FOOTER RAS-JOURNALS