JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 55(2021) N 6 p. 839-846; DOI 10.1134/S0026893321050071 Full Text

M.S. Kozin1,2*, I.S. Kiselev1,2, N.M. Baulina1,2, G.V. Pavlova1,2, A.N. Boyko1, O.G. Kulakova1, O.O. Favorova1

Risk of Multiple Sclerosis: Analysis of Interactions Between Variants of Nuclear and Mitochondrial Genomes

1Pirogov Russian National Research Medical University, Moscow, 117997 Russia
2Sirius University of Science and Technology, Sochi, 354340 Russia

*kozinmax1992@gmail.com
Received - 2021-02-15; Revised - 2021-04-22; Accepted - 2021-05-07

There is increasing evidence that the interaction of the mitochondrial and nuclear genomes substantially affects the risk of neurodegenerative diseases. The role of mitonuclear interactions in the development of multiple sclerosis, a severe chronic neurodegenerative disease of a polygenic nature, is poorly understood. In this work, we analyzed the association of multiple sclerosis with two-component mitonuclear combinations that include each of seven polymorphic variants of the nuclear genome localized in the region of the UCP2, and KIF1B genes and in the PVT1 locus (MYC, PVT1, and MIR1208 genes) and each often polymorphisms of the mitochondrial genome, as well as individual genetic variants that make up these combinations. Association of the individual components of these combinations with multiple sclerosis was also evaluated. 507 patients with multiple sclerosis and 321 healthy individuals were enrolled in the study, all participants were ethnic Russians. Two mitonuclear combinations associated with multiple sclerosis were identified: the UCP2 (rs660339)*A + MT-ATP6 (rs193303045)*G combination was characterized by p-value = 0.015 and OR= 1.39 [95% CI 1.05-1.87], and the PVT1 (rs2114358)*G + MT-ND1 (rs1599988)*С combination - by p-value = 0.012 and OR = 1.77 [95% CI 1.10-2.84]. Only one of the individual components of these combinations, allele rs660339*A of the nuclear gene UCP2 encoding uncoupling protein 2 of the mitochondrial anion carrier family, was independently associated with multiple sclerosis (p = 0.028; OR = 1.36 [95% CI 1.01-1.84]). This study expands the current understanding of the role of mitonuclear interactions and variance of nuclear genes, whose products function in mitochondria, and in risk of MS.

multiple sclerosis, genetic predisposition, mitochondrial genome, nuclear genome, single nucleotide polymorphism, association, mitonuclear interaction



JMB-FOOTER RAS-JOURNALS