JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 53(2019) N 1 p. 13-23; DOI 10.1134/S0026893319010199 Full Text

K. Zhou1, Q.-X. Cao1, J.-Q. Qi1, C.-M. Jin1, G.-L. Li1, J.-J. Zhang1*

Identification of Two GLOBOSA-like MADS-box Genes in Tea Plant (Camellia sinensis [L.] O. Kuntze)

1Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Shaanxi, Xi'an, 710119 People's Republic of China

*zhangjinjin@snnu.edu.cn
Received - 2018-03-22; Revised - 2018-06-04; Accepted - 2018-06-25

Tea plant (Camellia sinensis [L.] O. Kuntze) is a woody crop of high economic importance worldwide; however, information on the molecular mechanisms underlying the regulation of flower development in this species is limited. In the present study, two GLOBOSA (GLO) -like MADS-box genes, CsGLO1 and CsGLO2, were isolated from C. sinensis 'Ziyangzhong' and were characterized to elucidate their roles in flower development. We found that CsGLOl and CsGLO2 are nuclear-localized transcription factors without transactivation ability but with a robust interaction. They have similar patterns of expression, both mainly restricted to petals and stamens. Moreover, ectopic expression of either CsGLO1 or CsGLO2 in Arabidopsis thaliana resulted in a partial conversion of sepals to petals, suggesting full GLOBOSA functional activity. Our results indicate that CsGLO1 and CsGLO2 paralogs might redundantly contribute to petal and stamen, providing the first insight into their role in tea plant flower development.

tea plant, flower development, GLOBOSA-like, transcription factor, function, molecular mechanism



JMB-FOOTER RAS-JOURNALS