JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 51(2017) N 3 p. 408-415; DOI 10.1134/S0026893317020212 Full Text

X.-T. Xie1, X.-L. Zhan1*, Z.-H. Hu2

Zinc finger protein 521 suppresses osteogenic differentiation of rat mesenchymal stem cells by inhibiting the Wnt/beta-catenin signaling pathway

1Spine and Osteopathy Ward The First Affiliated Hospital of Guangxi Medical University Nanning, Guangxi, 530021 China
2Department of Orthopedics Liuzhou Peoples Hospital Liuzhou, Guangxi, 545006 China

*zhanxinli2015@163.com
Received - 2016-04-20; Accepted - 2016-05-25

Zinc finger protein 521 (Zfp521) is involved in a number of cellular processes in a variety of cells and tissues. In the present study, the effects of Zfp521 on osteogenic differentiation of rat mesenchymal stem cells (MSCs) were investigated. The results showed that, in rat MSCs, knocking down cellular Zfp521 by short hairpin RNA (shRNA) decreases cell proliferation while promoting ALP activity, calcium accumulation, and the expression of mRNA that encodes bone sialoprotein (BSP), osteocalcin (OCN) and Runx2. Furthermore, in Zfp521-depleted cells, the up-regulation of phospho-Wnt (p-Wnt) and beta-catenin expression levels was detected. However, over-expression of Zfp521 played the opposite role in proliferation and osteogenic differentiation of rat MSCs. To further demonstrate the functions of the Wnt/beta-catenin signaling in Zfp521 regulated-osteogenic differentiation, the activation of Wnt/beta-catenin was blocked with IWP-2 inhibitor. The suppression of the Wnt/beta-catenin pathway completely abrogated the effects of Zfp521 knockdown on osteogenic differentiation of rat MSCs. Therefore, we conclude that Zfp521 regulates osteogenic differentiation of rat MSCs through the suppression of the Wnt/beta-catenin signaling pathway.

Zfp521, MSCs, proliferation, osteogenic differentiation, Wnt/beta-catenin



JMB-FOOTER RAS-JOURNALS