JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 44(2010) N 1 p. 109-118;
M.Y. Lobanov, A.V. Finkelstein*

Analogy-Based Protein Structure Prediction: III. Optimizing the Combination of the Substitution Matrix and Pseudopotentials Used to Align Protein Sequences with Spatial Structures

Institute of Protein Reseach, Russian Academy of Sciences, Pouschino, 142290 Russia

*afinkel@vega.protres.ru
Received - 2009-05-19; Accepted - 2009-06-29

A general and fast method for maximizing the "recognition ability" of a linear combination of an arbitrary number of various methods used to recognize protein structures and produce sequence-to-structure alignments for the structurally analogous proteins is described. It is shown that, at a low level of sequence similarity, the optimal combination of methods displays a significantly higher recognition ability than each method alone; the leading role in this combination is played by (1) pseudopotentials of long-range interactions, (2) matrices of secondary structure similarity, and (3) amino acid substitution matrices. In the case of a high sequence similarity, substitution matrices play the leading and practically the sole role in the optimal combination, although the addition of pseudopotentials of long-range interactions and matrices of secondary structure similarity somewhat increases the recognition ability of the combined method.

amino acid sequence, 3D structure, protein, decoys, substitution matrix, pseudopotentials, combination of methods, alignment



JMB-FOOTER RAS-JOURNALS