JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 42(2008) N 4 p. 588-597;
E.S. Zvezdova1, T.S. Grinenko2, E.L. Pobezinskaya3, L.A. Pobezinsky3, D.B. Kazansky1

Coreceptor function of CD4 in response to the MHC class I molecule

1Blokhin Cancer Research Center, Russian Academy of Medical Sciences, Moscow, 115478, Russia
2Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
3National Cancer Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
Received - 2008-01-17; Accepted - 2008-02-27

The specificity of the T-cell receptor (TCR) and its interaction with coreceptors play a crucial role in T-cell passing through developmental checkpoints and, eventually, determine the efficiency of adaptive immunity. The genes for the α and β chains of TCR were cloned from T-cell hybridoma 1D1, which was obtained by fusion of BWZ.36CD8α cells with CD8+ memory cells specific for the H-2Kb MHC class I molecule. Retroviral transduction of the 1D1 TCR genes and the CD4 and CD8 coreceptor genes was used to obtain 4G4 thymoma variants that exposed the CD3/TCR complex together with CD4, CD8, or both of the coreceptors on their surface. Although the main function of CD4 is to stabilize the interaction of TCR with MHC class II molecules, CD4 was found to mediate the activation of transfected cells via TCR specific for the H-2Kb MHC class I molecule. Moreover, CD4 proved to dominate over CD8, since the response of CD4+CD8+ transfectants was suppressed by antibodies against CD4 and the Ab MHC class II molecule but not to CD8. The response of CD4+ transfectants was not due to a cross-reaction of 1D1 TCR with MHC class II molecules, because the transfectants did not respond to splenocytes of H-2b knockout mice, which were defective in the assembly of the MHC class I molecule/β2 microglobulin/peptide complex and did not expose the complex on cell surface. The domination was not due to sequestration of p56lck kinase, since CD4 devoid of the kinase-binding site was functional in 4G4 thymoma cells. The results were used to explain some features of intrathymic cell selection and assumed to provide an experimental basis for developing new methods of anticancer gene therapy.

T cell, cloning, retrovirus, transduction, coreceptor, CD4, CD8, MHC, TCR



JMB-FOOTER RAS-JOURNALS