JMB-HEADER RAS-JOURNALS EIMB Pleiades Publishing

RUS

             

ENG

YearIMPACT-FACTOR
2022  1,200
2021  1,540
2020  1,374
2019  1,023
2018  0,932
2017  0,977
2016  0,799
2015  0,662
2014  0,740
2013  0,739
2012  0,637
2011  0,658
2010  0,654
2009  0,570
2008  0,849
2007  0,805
2006  0,330
2005  0,435
2004  0,623
2003  0,567
2002  0,641
2001  0,490
2000  0,477
1999  0,762
1998  0,785
1997  0,507
1996  0,518
1995  0,502
Vol 42(2008) N 2 p. 234-242;
R. Wu, Y. Sun, L.M. Lei, S.T. Xie

Molecular identification and expression of heat shock cognate 70 (HSC 70) in the pacific white shrimp Litopenaeus vannamei

Institute of Hydrobiology, Jinan University, Guangzhou, 510632, China
Received - 2007-04-06; Accepted - 2007-06-09

Heat shock protein 70s (HSP70s) are fundamental chaperone proteins that are indispensable to most living organisms. In order to investigate the function of HSP70 and heat shock response in shrimp, a heat shock cognate (HSC70) gene of the white shrimp (Litopenaeus vannamei), containing a 1959-bp open reading frame, was cloned and characterized. The amino acid sequence, 71.5 kDa of molecular weight, shares 80-99.6% homology with 12 diverse species' HSP70s and HSC70s. In fact, some segments of the eukaryotic HSC70 sequence, such as ATP/GTP-binding site, cytoplasmic HSP70 C-terminal sequence, and GGMP/GAP repeats, are also found in the putative shrimp HSC70. Moreover, multitissue RT-PCR was performed to assay the basal expressions of HSC70 in the heart, gill, hepatopancreas, stomach, gut, and muscle. The results demonstrate that the basal expressions of HSC70 in theses organs are similar to that of β-actin. Furthermore, quantitative real-time experiments showed that HSC70 was upregulated in hepatopancreas (4.6-fold), stomach (5.9-fold), gut (2.6-fold), and muscle (3.5-fold) but not in the heart (1.7-fold) and gill (1.6-fold) after 2 h of heat shock. Nevertheless, the HSC70 was found to be highly expressed in the heart and gill following 6 h of heat shock. This suggests that HSC70 in white shrimp possess both short-term and long-term responses to heat shock stress, indicating this HSC70 may be a heat-dependent HSC70 member. Finally, we constructed an expression vector to generate HSC70 in Escherichia coli BL21, which displayed immune cross-reactivity with mouse HSP70 antibody. In conclusion, the identification and expression of the white shrimp HSC70 gene present useful data for studying the molecular mechanism of heat shock response and the effect of heat shock proteins in shrimps' cytoprotection.

HSC70, HSP70, heat shock, Litopenaeus vannamei, expression, cloning



JMB-FOOTER RAS-JOURNALS